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New set of symmetries of the integrable equations, Lie algebra 
and non-isospectral evolution equations: 11. AKNS system 

Li Yi-sheniS and  Zhu Guo-cheng§ 
i International Centre for Theoretical Physics, Miramare, Trieste, Italy 
5 Department of Mathematics, University of Science and Technology of China, Hefei, 
Anhui, People's Republic of China 

Received 15 January 1986, in final form 19 March 1986 

Abstract. In this paper, we define directly a new set of symmetries for the AKNS system 
and prove that they constitute an infinite-dimensional Lie algebra with the 'old' symmetries. 
We also point out the relation between the new symmetry and the non-isospectral problem. 

We use the reduction technique and point out that the NLS, MKdV, SG and sinh-G 
hierarchies have two sets of symmetries which constitute an infinite-dimensional Lie algebra. 
These results are extensions of those of Chen et al. 

1. Introduction 

It is well known that integrable non-linear evolution equations in general possess an 
infinite number of classical conservation laws. Associated with these conservation laws 
are classical symmetries (called k symmetries) which d o  not depend explicitly on the 
space and time variables. 

Recently, new symmetries (called 7 symmetries) which depend on the space and  
time variables explicitly have been found. Olver (1980) found a new symmetry for the 
Kdv equation, Fokas and Fuchssteiner (1981) found part of T~ for the BO equation and 
used this part of 72 to derive the classical symmetry K, .  Then Oevel and Fuchssteiner 
(1982) found part of T~ for the K P  equation and used this part of T~ to derive the 
classical symmetries. At the same time, Chen et a1 (1982a) found the new hierarchy 
of symmetries for six non-linear evolution equations: the Kdv, MKdv, NLS, S G ,  BO and  
K P  equations. These new symmetries were defined recursively through the Lie product 
of a specially chosen new symmetry with previously obtained ones. Together with the 
known classical symmetries, they constitute an  infinite-dimensional Lie algebra. 

We found that the first new symmetry of many evolution equations appeared 
naturally in the corresponding evolution equations which related to the non-isospectral 
problem. In a previous paper (Li and Zhu 1985) we defined directly the new set of 
symmetries for the Kdv equation by a recursion operator and then proved that they 
constituted an  infinite Lie algebra with classical symmetries. In this paper, we extend 
this to the A K N S  system. 

This paper is organised as follows. In § 2 we introduce some notation and verify 
that the recursion operator 4 (see ( 2 . 2 ) )  is a hereditary symmetry and is a strong 

$ On leave of absence from Department of Mathematics, University of Science and Technology of China, 
Hefei, Anhui, People's Republic of China. 
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d 
G' (u ) [u ]= -G(u+Eu)  

dE 

symmetry of the corresponding evolution equation and then we prove some lemmas. 
In § 3, we prove that there are two sets of symmetries of the AKNS hierarchy and that 
they constitute an infinite-dimensional Lie algebra. In 5 4 we consider the symmetries 
and Lie algebras of NLS, MKdv,  SG and sinh-Gordon hierarchies by a reduction technique 
and obtain more symmetries than in Chen et a1 (1982a) for the last three hierarchies. 
Finally we give an explicit formula for the inverse operator of 41 (see ( 4 . l b ) )  in the 
appendix. 

. 
E = O  

2. Notation and some lemmas 

Let U be a vector space constructed by all vector functions f = , where f' and f i  

are functions of x and t and assume that f l  and f i  are sufficiently smooth functions, 
i.e. f i t  f i  and their derivatives of any possible order with respect to t and x vanish 
rapidly as \x/+co.  

(2 
We always assume U =  E U in the following. Set 

and consider the AKNS hierarchy 

U, = k ,  = 4"'u m =0, 1 , 2 , .  . . 
where 

1 - D + ? q D - ' r  
'=T( -2rD-'r 

(or take Z=J:".dx instead of -D-'=-J"_.dx in (2 .2)) .  
The first three ki are 

Set G ( u )  = G(q, qx, . . . , r, r,, . . .) where G can be a function or operator. We define 
the Gateaux derivative 

(2.4) 

G'(u)[cr ]  is the derivative of G in the direction c r =  (z:) at the point U = 

We have the following formula by definition: 

( ~ G ) ' [ ( T ]  = 4 ' [ c r ] G + ' G ' [ ~ ] .  (2.5) 
Consider the linearised equation of (2.1): 

U, = K L [ U ] .  (2.6) 
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We write first three K k :  

2q' ). (2.7) K;=i ( - l  0 - 1  O )  K ; = ( o  D )  K ~ = T  i (  -2r2  D2-4rq 
D O  1 -D2+4qr 

A solution of ( 2 . 6 ) ,  (+ = , is called a symmetry of ( 2 . 1 )  (3 
We now prove the following two lemmas for the operator 4. 

Lemma 1. 

c#J ' [xu]+4(xu) ' - ( xu ) '4  = I 
1 0  

where I = (o 

Proof: It is easy to verify that 

2qD-Ixr -2xqD-'r -2qD-'xq -2xqD-lq 
-2rD-'xr -2xrD-Ir 2rD-'xq -2xrD-'q 4 ' [ X U ]  = 

X D  + 2xqD-'r -2xqD-'q 
-2xrD-'r X D  -2xrD-'q 

From the above, we get (2 .8)  immediately. 

Lemma 2. 

4'[4flg - 4'[4glf  = 4 { 4 ' [ f l g  - 4 'k l . f )  (2.9) 

where f and g are arbitrary functions in U. An operator with this property is called 
a hereditary symmetry (see Fuchssteiner and  Fokas 1981). 

Proof: For any f = (i) and g = ( : l ) ,  we have 
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Put 

then 

Lemma 3. 

+'[Km1 = [KL, 41. 
This shows that 4 is a strong symmetry for equation (2.1). 

(2.10) 

Proof: Set U, = KO, i.e. (;;) = (;?). 
We verify 4' [K, , ]  = [ Kb, $1. It is easy to verify that 

Thus we obtain 4'[ KO] = [ Kb, 41. 

4 is a strong symmetry for U, = 4"'K,,= K,. Hence (2.10) holds. 
Since r$ is a hereditary symmetry and a strong symmetry for U, = KO, we have that 

Define the Lie product as follows: 

[ K ,  G ] =  K ' [ G ] -  G'[K]. 

Now we prove the following lemmas. 

(2.11) 

Lemma 4. 

[ K ,  , K ,  ] = K A[ K ,  ] = K ;[ K ,  ] = 0 m , n = 0 , 1 , 2  , . . . .  (2.12) 
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Proof: Using the property of the strong symmetry of the operator 4 and (2.5), we have 

[ K m ,  Kn1 = ( 4  "u) ' [cP " U ]  - ( 4 " ~ ) ' [ 4  " 'U]  

= 4'[ c#l"u]4"-'u + $I( 4 " - ' u ) ' [ 4 " u ]  - ( 4 " u ) ' [ 4 " u ]  

= [ j ( b " U ) ) ,  4 ] 4 " - ' u  + 4 (  4" - 'u ) ' [  4 " U l  - ( 4 " u ) ' [  4 " U ]  

= ( + " u ) ' 4  " U  - 4(  4 " U ) ' [  &- 'U]  + 4 ( 4 " - ' u ) ' [  4 " U ]  - ( 4 " u ) ' [ 4  " U ]  

= 4[Km-l,  Kn1. 

Then we can obtain (2.12) from (2.13) by induction. 

Lemma 5. 

[4"u,  x u ]  = m+"-'u = mK,- ,  m = 1,2 , .  . . . 

(2.13) 

(2.14) 

- - = U = & .  

(2.14) holds when m = 1 and assume that 

[ 4 m ~ ' u , ~ ~ ] = ( m - l ) K , ~ z = ( m - 1 ) m ~ 2 ~ .  

Then 

[+"U, x u ]  = 4 ' [ x u ] 4 m - ' u + + ( ~ " - ' u ) ' [ X u ] - ( x u ) ' [ + m U ]  

= 4 ' [ x u ] + " - ' u +  d J [ ( 4 " - ' p ) ' [ x u ]  

- ( x u ) ' 4 "  - ' U  + ( x u ) ' [  4 m - ' U ]  - ( x u ) ' [  4 " U ]  

= 4[  4 -'U, x u ]  + { d ' ( X U )  + dJ ( x u ) '  - ( x u ) ' 4 } #  

From lemma 1, we obtain 

[ ~ m ~ , ~ ~ ] = ( m - l ) ~ m ~ ' ~ + ~ m ~ l u = m ~ ' " ~ ' u = m K , ~ , .  

Lemma 6. 

[ 4 " ' u ,  ~ " x u ]  = mK,+,-' m = 1 , 2  , . . .  ; n = 0 , 1 , 2  , . . . .  (2.15) 

Proof: (2.15) holds for n = 0, by virtue of lemma 5. 

obtain 
Set [+,U, ~ " - ' x u ]  = mK,+ , -Z .  Then using the property of strong symmetry, we 

[ 4 " U ,  4 " x . ] = [ K m 4 " x u ] =  K L [ 4 " x u ] - ( 4 " x u ) ' [ K , ]  

= K L [ ~ " x u ] - ~ ' [ K , ] ~ " - ' x u - ~ ( ~ " - ' x u ) ' [ K , ]  

= K L [ ~ " x u ]  - [ K L ,  4 ] 4 " - ' ~ ~  - 4 ( 4 " - ' x u ) ' [ K , ]  

= K L[ 4 " X U ]  - K >[ 4 " X U ]  + 4 K  L[ 4 " - ' X U ]  - 4( 4' - ' X U ) ' [  K,] 

= 4 [ K , ,  ~ " - ' x u ]  = 4mK, , , -2  = m K , + n _ l ,  
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Lemma 7. Let F,,,, = ( ~ " - ' X U ) ' [ ~ " ' X U ] .  Then 
q ! ~ ' [ r $ " - ' x u ] ~ " - ' x u  - Fn,,, = -4Fn,,,-' + 4 n + ' n - 2 ~ ~ .  

Proof: Using (2.5) over and over again we have 

Fn,,, = 1 ~ J - 2 ~ ' [ ~ m ~ ~ ] ~ n - J ~ ~ + ~ " - ' ( ~ ~ ) ' [ ~ m ~ ~ ] .  
J = 2  

Using relations (2.8) and (2.9) we obtain 
$ J ' [ ~ " - ' X U ] ~ " - ' X U  - F,,,, = $ J ' [ C $ " - ' X U ] ~ $ ' ~ - ' X U  - ~ ' [ ~ " ' x u ] ~ " - * x u  

(2.16) 

(2.17) 

Therefore lemma 7 has been proved. 

Lemma 8. 

[ ~ " ' x u ,  xu ]  = m 4 " - ' ( x u )  m = l , 2 ,  

Proof: When m = 1, from lemma 1 we have 

[ 4xu ,  xu ]  = ( ~ x u ) ' [ x u ] - ( x u ) ' [ ~ x u ]  

= 4 ' [ x u ] x u  + 4 ( x u ) ' [ x u ]  - ( x u ) ' [ $ J x u ]  

= { ~ ' [ x u ] + ~ ( x u ) ' - ( x u ) ' ~ } x u  =xu.  

(2.18) 

Therefore (2.18) holds for m = 1. 
Assume 

[ ~ " - ' x u ,  xu ]  = ( m  - l ) 4 " - 2 ( x u ) .  

[ 4 "xu ,  xu ]  = 4 ' [ x u ] 4 " - ' x u +  ~ ( ~ ' " - ' x u ) ' [ x u ] - ( x u ) ' [ ~ " x u ]  

This yields 

= { c$'[xu] + 4(  xu) '  - ( X U ) ' 4 } 4  " - ' X U  - 4(  xu)'+" - ' xu  + 4(  4 " - ' x u ) ' [  xu ]  
= 4 " - ' X U  + 4[r$"- 'xu, xu ]  

= + " - ' x u + 4 ( m  - 1 ) 4 " - * ( x u )  

= mr$"-'xu. 
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Lemma 9. 

[ ~ " x u ,  ~ " x u ]  = ( m  - n)4"+"- ' ( xu )  m = 1 , 2  , . . .  ; n = 0 , 1 , 2  , . . . .  (2.19) 

Proof: When m = 0, hy virtue of lemma 8, (2.19) holds for any n. We assume 

[ ~ " - ' x u ,  ~ " x u ]  = ( m  - n - 1)4"+"-2(xu) .  

Then, using (2 .5 ) ,  (2.9) and (2.16) we obtain 

[+"xu, 4 " X U - j  = 4'[4nXU]4m-1XU+ 4 ( ~ " - 1 X U ) ' [ 4 n X U ]  -c$'[4"xu]4"-'xu 

- 4(4 n - ' X U ) ' [  4 " X U ]  

- ( 4 " - ' X U ) ' [ ~ m X U ] }  

= 4 { 4 ' [ 4 " - ' x u ]  - ~ ' [ ~ m - ' X U ] ~ " - ' X U + ( ~ m - ~ X U ) ' [ ~ " X U ]  

= 4 { 4 ' [ 4 " - ' x u ]  - Fn,m} - 4{q5 ' [4" - ' xu]4" - ' xu  - ( 4 " - ' x u ) ' [ ~ " x u ] }  

= 4{-4F","-' + 4 " + m - 2 X U }  - 4 { d J ' [ ~ " - ' x u ] 4 " - ' x u  - 4 ' [ f $ " X U ] 4 " - ~ X U  

= 4 n + m - ' X U +  ~ { - ~ ( 4 " - ' x u ) ' [ ~ " - ' x u ] -  (b '[4"- 'xu]4"- 'xu 

= 4 n + m - ' X U + 4 [ 4 " - ' X U ,  d " x u ]  

- I#Jm-'xu)'[ r$"xu]} 

+ 4'[ 4 " x u ] 4  " - ? X U  + I$( 4 " -Zxu)'[ 4 " x u ] }  

= 4"+"- 'xU+(m - n - 1)4"+n-'xu = ( m  - n)4mT"- 'xu.  

Lemma 10. Consider the equation 

U ,  = K ( u ) .  (2.20) 

We have the following results. 
(i) If is a strong symmetry for (2.20) and 4 i s  invertible, then 4-l is also a 

(ii) If 4 is a hereditary symmetry and I$ is invertible, then 4-l is also a hereditary 

(iii) If 4 is a strong symmetry for (2.20), then q5Z i s  also a strong symmetry for (2.20). 
(iv) If 4 is a hereditary symmetry, the 

strong symmetry for (2.20). 

symmetry. 

is also a hereditary symmetry. 

All these results can be verified by definition (see Zhu 1986). 

3. Basic theorems 

Let 

70" = mtK,- I + xu 

and 

7:: = = mtK,+,-, + ~ " x u .  

We now prove the following three theorems. 

Theorem 1. 
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(C), = K X 7 7 1  m = 1 , 2  , . . .  ; n = 0 , 1 , 2  , . . . .  (3.3) 

i.e. for any n, T: are symmetries for equation ( 2 . 1 ) .  

ProoJ: Since d is a strong symmetry of the equation ( 2 . 1 ) ,  4 maps the symmetry of 
equation ( 2 . 1 )  into the symmetry of ( 2 . 1 ) ,  (see Fuchssteiner and Fokas 1981) and it is 
sufficient to prove the following identity: 

( T 7 ) r  = KX7,"I. (3.4) 

(3.4) can be proved as follows: 

( T : ) ,  = m K , ~ , + m t K , _ l , , + ( x u ) , .  

By lemmas 4 and 5,  we have 

K L [ T ~ ]  = mrK ;[ + K ' , [ x u ]  

= m t K ~ - , [ K , ] + K ~ [ x u ]  

= m t K , _ l , r + [ K , ,  x u ] + ( x u ) ' [ K , ]  

= mtK,,- , , ,  + m K , - I  + ( x u ) , .  

From the above two identities we know that (3.4) holds. 

Theorem 2. 

[ K m ,  71,1= mKm+n-l I =  1 , 2 , .  . ,; m = 1 , 2 , .  . .; n =0,  1 , 2 , .  . . . 
This theorem can be proved by lemmas 4 and 6. 

(3.5) 

(3.6) 

Proof: By definition of 7:: and by lemmas 6 and 9, we obtain 

[ T ? ,  T , " ]  = m t [ K , , I - E ,  4"xul+mt[q5'xu,  K , , . - , I + [ 4 ' x u ,  4"xul  

= m t ( m  + I -  I)K,,,+,,+,-~- m t ( m  + n - I ) K , , , + , , + ~ _ ~ + ( ~ - -  n ) 4 ' + " - ' x u  

= m t ( l -  n ) ~ , , , + , , + ~ - ~ + ( / -  n)4""-Ixu 
= ( I -  n ) T K n - l .  

We now consider the following non-linear equation which corresponds to the new 
symmetries T ; :  

U ,  = r:. (3.7) 

In  Li (1982) ,  we considered the eigenvalue problem 

with 

In the non-isospectral case, i.e. 
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\ 

6 = c k,(t)5”-’ 
, = o  

the compatibility condition 

yields the non-linear evolution equation 

3721 

(3.10) 

(3.11) 

Thus we have the following theorem. 

Theorem 4. Equation (2.11, 

U ,  = dmU 

and equation (3.71, 

, I  U + 4 ” x u  = 7 f ) 1  = mt41?i-)l-1 

are special cases of equation (3.1 1 ). 
In fact, when N = m, k ,  = 0, i = 1, 2 , .  . . , m (i.e. 6, = 0) and c y o =  2”’-’, cy, = 0, i f  0, 

(3.1 1 )  is reduced to (2.1). When N = n + m - 1, cyg = mt2”’+‘1-2, cy, = 0, i # 0, k,,-’ = 2“-l ,  

k,=o, j # m - 1 and (3.11) is reduced to (3.7). 

4. The reduction of equation (2.1) 

Equation (2.1 ), which we considered above, is a two-dimensional vector equation. By 
a reduction technique, it can be reduced to a scalar equation. 

4.1. N L S  hierarchj3 

Taking r = E q “ ,  F = i l ,  we see that two equations of (2.1) are compatible. Take one 
of them and let 

( 4 . 1 ~ )  

Equation (2.1)  becomes 

q, = K,, = @‘“-iq). 

The first three K ,  are as follows: 

Ko = -iq Kl = 4% K z  = i[q,, -2elql‘ql .  

Define 

7:: = mtKm+,-l + 4”( - ixq )  m = l , 2 , .  . .; n = 0 , 1 , 2 . .  , , 

( 4 . 2 ~ )  

( 4 . 3 ~ )  

(4.4a) 
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Then we have the following proposition. 

Proposition 1. 

(i) 7:: are symmetries for equation ( 4 . 2 ~ )  

(ii) [ K,, K,] = 0 
(iii) [K,, T ; ]  = mK,+,-, 

(iv) [ T ? ,  7 ~ ] = ( 1 - n ) 7 Z . - 1 .  

4.2. MKdv hierarchy 
r = E q ,  E = *I,  q is a real function of x, t .  Let 

41 = - D 2 + 4 ~ q , D - ' q + 4 ~ q 2 .  

Consider equations 
U, = q52m+1u. 

Since 

equation (4.2b) can be read as 

which can be reduced to scalar equations: 
I 

qr = 4T q x  = Km 

KO = 4.; 

where - 
kl = -4xxx +6eq2q,. 

(4.5a) 

(4.6a) 

(4.7a) 

(4.8a) 

(4.lb) 

(4.2b) 

( 4 . 2 ~ )  

(4.3b) 

Since dzm are hereditary symmetries and are strong symmetries for the equation 

(:), = 4u, from lemma 10, we conclude that 4; are hereditary symmetries and are 

strong symmetries for the equation ql = qy. 

~ ; = ( 2 m + l ) t ~ , + ( x q ) ~ i : : = 4 ~ ~ ' ~ ; ' = ( 2 m + l ) t R , , , , , - , + ~ ~ - ' ~ x q ) , .  (4.46) 

respectively) the following proposition. 

Define 

we obtain (note that km and f? defined here are K,,,  ?, and 7 1 ~ -  ' m i l  in . theorem 2 ,  

Proposition 2 

( i )  ?? are symmetries of equation ( 4 . 2 ~ )  

(ii) [ k,,, I?,,] = o 
(iii) [R,,,, ; I ]  = (2m+ l)k,,,-,,-, 
(iv) [??, ;,"]=2(1-n);;",,-, .  

(4.Sb) 

(4.66) 
(4.7b) 

(4.86) 
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4.3. Sine-Gordon and sinh-Gordon hierarchies 

We note that the operator bl given by (4 . lb)  is invertible, i.e. the operator 42 is 
invertible. We are going to give an explicit formula for 4;'. 

Let 4 ,g  = h, where g and h are arbitrary functions in U. Then when E = -1 we 
have (see the appendix) 

where the constant C and function U are given by 

C = - i  lim D - ' h / q  (4.10) 
Y + - X  

and 

v = D-' 4. (4.11) 

When E = 1, we obtain (see the appendix) 

g = C sinh 2 D - ' q  -1 sinh 2( U - U )  [ - D y u ) ] u  du = 4 L ' h .  (4.9b) 

We point out that when m = -1, equation ( 4 . 2 ~ )  reduces to the scalar equation 
q, = d;'qr. When F = -1, we take g = qf in ( 4 . 9 ~ )  and h = 4.; in (4.10) and the equation 
q, = 4;'qy is reduced to the sine-Gordon equation 

5,' 

q, = -1 sin 2D-Iq. (4.12) 

When E = 1, we take g = q, in (4.96) and h = qy in (4.10) and the equation q, = 4;;, is 
reduced to the sinh-Gordon equation 

(4.13) 

Define ;: and F T  as (4.4b), since 4' is invertible and m and n can be taken as 
positive or  negative. From the results ( i )  and ( i i )  in lemma 10, we conclude that d1 
and 4;' are hereditary symmetries and are strong symmetries of of q, = 4:qx ( m  = 
0,  * l ,  1 2  . . .) and especially they are strong symmetries of the M K d v  equation q, = 41qx 
and the sine-Gordon (or sinh-Gordon) equation q, = 4;'qx. 

In this case (4.56)-(4.86) in proposition 2 also hold, but f, m and n can be negative. 
By the way, we note that in proposition 2 ,  when m = 1 and n is taken to be positive, 
the ;; defined here are the so-called 7 symmetries in Chen er a1 (1982b), but the 
symmetries to be obtained here are more than in Chen er a1 (1982a, b, 1983) because 
n can be taken as negative here. 

Since 4' is invertible, we conclude that the M K d v  and sine-Gordon hierarchies (or 
the sinh-Gordon hierarchy) have the same symmetries. 

q, = -$ sinh 2D-'q. 
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Appendix 

We prove that (4.9a) is an explicit formula of the inverse operator 4; ' ,  where the 
operator 4' is given by (4.16). 

Rewrite the operator as follows: 

c$l= D(-D+4&qD-'q) .  (-41) 

4 , g  = h 

Let 

which yields 

-gx + 4 ~ q D - ' q g =  D-'h. 

Put 

Then 

q = U,. 

Considering g as a function of U, g(q(x))  = g(v(x)) ,  we have 

gx = gvux = guq. 
Substituting (A4) into (A3) we obtain 

-g,+4&D-'vXg= D- lh lq  

or 

-g,+4& 1; g dv = D-'h/q 

which yields 

-g"u + 4Eg = H (  U )  

where 

The solution of equation (A6) can be obtained as follows. 
(i)  E = -1, the general solution of equation (A6) is 

g = Cl sin 2 v +  C, cos 2 u - t  sin 2(u - u ) ~ ( u )  du 

where C , ,  C, are arbitrary constants. 
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It is naturally required that g + 0 as x + --OO so putting X+-W in (A3) we can get 

C, is determined by (A5). Putting x + --CO in (AS) we have 
c, = 0. 

-g,(O) = lim D - ' h / q  = lim D-'h/q.  
v - 0  x---oc 

On the other hand, differentiating (A8) with respect to U and putting x +  --OO yields 

gv(0) = 2c,. 

Thus 

Substituting (A9) into (A8), we obtain (4.90). 
(ii) E = + l ,  equation (A6) becomes 

- g v v + 4 g = H ( u )  

the general solution of which is 

g =  C1 sinh 2 u - t  C2 sinh 2 u - f  lov sinh 2 ( u - u ) H ( u )  du. (A101 

Then in the same way we determine that C, = 0 and C, is given by (A9). 
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